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J. Phys. A: Math. Gen., Vol. 10, No. 4, 1977. Printed in Great Britain. @ 1977 

New quantum representation for treating recoil effects in 
non-linear spectroscopy 

Jon H Shirelyt and Stig StenholmS 
Research Institute for Theoretical Physics, University of Helsinki, Siltavuorenpenger 20, 
SF-00170 Helsinki 17, Finland 

Received 5 November 1976 

Abstract. The problem of saturated absorption by a gas of two-level molecules, including 
recoil effects, is formulated in a new quantum representation for the molecular motion. The 
relationship to other representations is clarified in a simple chart. The new formulation 
requires the solution of simultaneous linear differential equations with mixed boundary 
conditions, instead of linear difference equations in two variables followed by an integration 
over velocity. Analytic solutions are presented for one running wave with Doppler line 
broadening, and for a weak probe beam in the Doppler limit. The latter lineshape is 
analysed to show when power broadening obscures the recoil splitting. 

1. Introduction 

Consider a molecule or atom with two long-lived internal states whose energies differ by 
hoo. Radiative transitions between these states are resonant when the angular fre- 
quency o = cq of the external field is exactly equal to wo-provided the molecule is held 
fixed. But if the molecule has a finite mass M and is free to recoil, it will acquire a recoil 
velocity 

V ,  = hq/M (1.1) 
to conserve momentum with the absorbed or emitted photon. To conserve energy also 
the absorption resonance must be shifted to w = oo+ S,, and the emission resonance to 
w = W O  - S,, where the recoil shift is 

S, = hq2/2M. 

In atomic and molecular physics the recoil shift is very small, usually much smaller than 
spectral linewidths. However, the techniques of non-linear spectroscopy with laser 
sources have now permitted the observation of the recoil splitting in the 3.39 km line of 
methane (Hall et a2 1976), even though the relative splitting 2S,/w0 is only 2 x 10-l'. 

Even without recoil the theoretical analysis of non-linear interactions leading to 
very narrow Doppler-free lines becomes quite complicated (Haroche and Hartmann 
1972, Shirley 1973). A pioneering attempt to include recoil effects was made by 
Kol'chenko et a1 (1969) using the Wigner representation. They obtained lineshapes for 
one travelling wave and for a standing wave in third order in the field strength. 

t Present address: Salina Star Route, Boulder, Colorado 
t Present address: Department of Technical Physics, Helsinki Universityof Technology, SF-02150 Espoo 15, 
Finland. 
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614 J H Shirley and S Stenholm 

Stenholm (1974) used a momentum representation to formulate the problem with 
recoil as coupled recursion relations in two variables. There the absorption of a weak 
probe beam was treated and a discussion of the physics of its dependence on the velocity 
of the absorber was presented. Aminoff and Stenholm (1976) have solved the recursion 
relations numerically in the ‘rate equation’ approximation. The results show how 
power broadening can obliterate the recoil splitting, but can leave an asymmetry in the 
lineshape when the lifetimes of the two levels are unequal. 

In all of this previous work the absorption is found first as a function of the velocity 
of the molecule and then integrated over a velocity distribution. The integration is 
always a problem, even when done numerically, since the integrand contains much 
more structure than the final result. In an effort to avoid this velocity integration, yet 
retain recoil effects, we have developed a new quantum representation for particle 
motion. In § 2 we formulate the saturated absorption problem in this representation. 

Other representations are discussed in § 3 and their interrelationships clarified. The 
mathematical features encountered in solving the equations of our new formulation are 
discussed in § 4. The solution for one travelling wave is presented as an example of the 
method in 0 5 .  Finally in § 6 we derive an analytic expression for the lineshape observed 
with a weak probe beam. We also discuss its interpretation in terms of overlapping, 
power-broadened resonances. Numerical solutions based on our new representation 
will be described in a following paper. 

2. Development of equations of motion 

For the Hamiltonian of a molecule we write three terms: the kinetic energy, the energy 
of the two internal states of interest, and the interaction energy with the electromagne- 
tic field: 

H=p^2/2M+ihwo~3 -@E(,?, t)ul. (2.1) 

The internal structure of a two-level molecule is described by 2 X 2 U matrices which 
obey the commutation rules of Pauli spin matrices. To treat the motion of the molecule 
quantum mechanically we also regard the position i and momentum f i  appearing in H 
as being operators obeying the commutation rule [.2, p ^ ]  = ih. For a plane-wave field 
only molecular motion in the z direction is important in the interaction. We shall not 
explicitly treat the other two dimensions. 

Assume the externally applied electromagnetic field to consist of two mono- 
chromatic plane waves with amplitudes E+ and hE+ running in the positive and negative 
z directions respectively: 

E($, t )  =E+ COS(+? - w t )  - AE+ COS(C@ +ut). (2.2) 
Let us rewrite the interaction energy &E+ as 2hbA where A is a dimensionless field 
amplitude and b is a coupling constant in frequency units (compare Shirley 1968,1973). 
Then in the rotating wave approximation the interaction term becomes 

-hbA (eiqi - A  e-jUrU+ + H~ 

where HC stands for Hermitian conjugate and U* = $(c1 f iaz), as usual. 
We assume that the average behaviour of the assembly of molecules making up our 

absorbing medium is described by an ensemble-averaged density matrix p obeying the 
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equation of motion 

(2.3) 

The commutator term fully describes the interaction of a freely moving molecule with 
the field. The additional term incorporates the average effect of relaxation processes. 
We shall use for it just simple decay terms with different decay rates for the different 
matrix components, plus a diagonal source term with a thermal velocity distribution: 

where K = Tr[exp(-b2/2Mk7')]. As relaxations remove molecules from interaction 
with the field, the source term makes them available again with thermally redistributed 
velocities. In the absence of the external field the medium relaxes to a steady-state 
condition 

To proceed we adopt a configuration space representation for the molecular 
motion; that is, we take matrix elements of the equation of motion (2.3) between 
position eigenstates (zl/  and 1z2) and write the result as a partial differential equation for 
the 2 x 2 matrix function p(z1, z2)=(z1/pIz2): 

The function p(zl ,  z2)  has the same transformation properties as the product of two 
one-particle wavefunctions ((I(zl) 4*(z2). In two-particle problems it is often conve- 
nient not to work with z1 and z2,  but with centre of mass and relative coordinates. In the 
same way, we find it more convenient to work with the sum and difference variables 

Z = ) ( z 1 + z 2 )  and z =z1-zZ. (2.7) 

The sum variable corresponds to the average position of the molecule, while the 
difference variable describes the spread of the quantum mechanical wave packet 
associated with the molecule. In terms of these variables the kinetic energy term in (2.6) 
becomes the mixed partial derivative (ih/M)a2p(Z, z ) / U  az ; while the source term 
contains 

where U = (2kT/M)"' is the most probable thermal speed and V, is the recoil velocity 
defined in (1.1). 
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The standing wave part of the external field induces a spatially periodic structure in 
the polarization of the medium. This structure appears in the variation of p with the 
sum variable 2. We, therefore, expand this dependence in a Fourier series: 

p ( ~ ,  z )  = 1 p(v ,  z)  eiuqz. 
U 

(2.9) 

Writing out the matrix components explicitly we obtain the following infinite set of 
coupled linear first-order differential equations: 

= A , ~ ( Z ) S , , ~  + ibA (Pbn (v - 1, z )  e-'"'- pab (v + 1, z) e'"') eiqz'2 

- ibAA (pba (V + 1, 2) e-'"' - peb (Y - 1, 2) e'"') 

= Ab$(z) S,,o-ibA(Pb,(v - 1, z )  e-'"' -pab(v + 1, I) e'"') 

+ibhA(pb,(v+ I, z )  e-I"'-p,b(v- I ,  z )  eior) e'qr'2 

- iqr /2)  = ibA (Pab(v - I ,  z )  eiqrl2 -pa, (Y - I, z )  e 

-ibAA [ p b b ( v  + 1, z )  -paa(v + 1, z )  eiqZ/'] e-'"' 

= -ibA[pbb(v+l, ~ ) e ' ~ ~ / ~ - p , , ( v + 1 ,  ~ ) e - ~ ~ ' / ' ]  e'"' 

+ibAA[pbb(v-l, ~ ) e - ~ ~ ~ / ~ - p , , ( v - 1 ,  ~ ) e ' " / ~ ]  e'"'. (2.10) 

Note that since 9 is independent of the sum variable 2 (the source is uniformly 
distributed in the medium), the source appears only in the Y = 0 equations. 

For boundary conditions we shall require that p(v ,  z )  vanish as z goes to plus or 
minus infinity. That is, we assume the molecular motion is described by wave packets of 
finite spatial extent so that ( z 1 / p l t 2 )  goes to zero as 1z1-z21 goes to infinity. A 
momentum eigenstate does not obey this boundary condition, but our source term (2.8) 
does for any finite temperature (non-zero U). In equations (2.6) the inhomogenous 
source terms generate values for pa, (0, z )  andpbb(O, z )  of finite extent. Interaction with 
the field spreads these values among the other components of p with non-zero Fourier 
indices v, but does not spread them to larger z values. 

To find the influence of the medium on the applied field, we calculate the induced 
macroscopic polarization, which we use as a source in Maxwell's equations. The 
complex amplitude of the running wave polarization will be proportional to the 
expectation value 

( (T-e*iqi)=Tr(po-e*"qi)= J (zllpabIzl)e*'qrl dzl=Lpab(v= ~ l ,  z =O), (2.11) 
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where L is the length of the medium traversed by the fieldt. Thus we do not need a 
complete solution of equations (2.10) for all v and z. The attenuation coefficients or 
susceptibilities are obtained from just the two specific values in (2.11). This is the 
feature which makes our new representation attractive. 

3. Relationship to other formulations 

In the development of our equations of motion we could equally well have chosen to use 
a momentum representation for the molecular motion, writing 

p(p1, PZ) = (PlIPIP2). 

For this representation the kinetic energy term in the equation of motion is just 
-i(2Mh)-'(p:-p~)p(pl, p 2 )  and contains no derivatives. On the other hand, eiqi is a 
translation operator in momentum space, so the interaction couples in p ( p l  f hq, p2)  

and p(pl, p 2  f hq) .  We thus obtain a set of difference equations in two variables, rather 
than differential equations. 

Just as we did in coordinate space let us introduce sum and difference momentum 
variables: 

P = $(PI + p d  and P = P I  - P Z ,  (3.1) 

where P describes the average momentum and p the spread in momentum for a 
molecule. Then the kinetic energy term becomes just -iPp/Mh. The source terms 
contain 

( ~ + i p p (  exp(-b2/2~kT)I~-4p)  = exp(-P2/M2 u 2 ) 8 ( p ) .  (3.2) 

Thus the source term generates a continuous range of values for P, but only the value 
zero for p .  The interaction couples p(P, p )  to other p components whose arguments 
differ by integral multiples of hq, hence only a discrete set of values for p will occur. We 
make this explicit by writing 

P = Mv +$phq = M(v +& V,) and p = vhq, (3.3) 

with p and v integers and v a continuous velocity parameter varying only over a range 
V,. Then the equations of motion for 

p(v ,  P, v )  =(Mu +%P + v)hqlplMv +b - V M 4 )  (3.4) 

become coupled difference equations in p and v identical to equations (2.19)-(2.21) in 
Stenholm (1974). Our derivation is equivalent to the earlier one except we have not 
used second quantization for the molecules. 

To calculate the polarization in the momentum representation we need to evaluate 

Tr(Pr- eaiqi) = J (plbab(pl f hq) dpl = Jp.b(v = T 1, p, v)M dv. (3.5) 

That is, after solving the coupled difference equations one must perform an integral 
over the velocity parameter and a sum over the p index. The total mathematical 

P 

t The normalization factor X is also proportional to L, hence our results will be independent of it. 
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problem becomes rather cumbersome with recoil included. However, it has been 
carried out (Aminoff and Stenholm 1976) when all components with Iv( > 1 have been 
neglected (rate equation approximation). 

The momentum representation has the advantage of automatically providing the 
Fourier expansion of the spatial dependence (v index). It also provides the dynamics 
explicitly for each momentum class of molecules. In this form the physics of the 
interactions (Doppler and recoil shifts, multiphoton processes, etc) can best be under- 
stood (Haroche and Hartmann 1972, Stenholm 1974). 

In quantum theory the position and momentum representations are related by 
Fourier transformations such that (zl, p l )  and ( zz ,  p 2 )  are Fourier transform variable 
pairs, In the same way our sum and difference variables form the transform pairs (Z, p )  
and (z ,  P) .  Thus the momentum representation equations of Stenholm (1974) can be 
obtained from the position representation equations (2.10) by Fourier transforming 
both 2 and z .  If we transform just one of these variables we obtain a mixed 
representation in terms of the two sum variables or the two difference variables. What 
are these representations like? 

The choice of the sum variables 2 and P for a representation is tempting, since we 
expect them to become the classical position and momentum variables in the correspon- 
dence limit. In fact, the representation in terms of 2 and P was proposed long ago by 
Wigner (1932) and an extensive literature has been built up on the methods of doing 
quantum mechanics in this representation (Moyall949). Kol’chenko et al(1969) used 
this representation in their early work on the recoil problem. However, the quantum 
mechanical features of the motion are not essential in their calculation. Their equations 
can be interpreted as those for a classical distribution in position and momenta with the 
added requirement that a molecule’s velocity changes by V, when its internal state 
changes. The Wigner formulation does assure one, however, that the off-diagonal 
components Pab and Pba should be assigned a classical velocity half way between that of 
the components paa and Pbb to which they are coupled by the interaction with the field. 

Despite the appeal of classical understanding, the Wigner representation becomes 
cumbersome to solve with recoil included. Without recoil it reduces to the conventional 
formulation used in laser theory (Lamb 1964). The latter has been best solved by 
Fourier expanding the spatial dependence (Stenholm and Lamb 1969, Feldman and 
Feld 1970), which we now see corresponds to using the momentum variables P andp. 

The representation used in this work is based on the difference variables? z andp. It 
is proportional to the characteristic function (exp[i(zp^ - p i ) / h ] )  discussed by Moyal 
(1949). To our knowledge no one has previously used this representation. We have 
derived it from the position representation by Fourier expansion of the 2 dependence. 
We could also have obtained it from the momentum representation by Fourier 
transformation of the P dependence. Since P = Mv classically, our new formulation is 
mathematically just a Fourier transformation of the velocity dependence in conven- 
tional formulations. The detailed information found in the velocity dependence, such as 
hole burning, now appears in the z dependence of the solutions of (2.10). Our present 
derivation provides a physical interpretation of the new variable z .  

The momentum representation can be related to our new representation in another 
way which reproduces the index p in (3.3). Mathematically the differential equations 

t Because we have assumed our source to be thermal and our interaction to be with a monochromatic external 
field, we have been able to restrict the values of p to discrete ones (index v), using a Fourier series rather than 
integral in (2.9). 
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Applying Floquet’s theorem (Moul- (2.10) are linear with periodic coefficients 
ton 1958) the homogeneous solution has the form 

z 
t Fourier 

transform 

P 

p ( v ,  t) = eikz 1 p ( v ,  p, k )  eiWr/*, 
(r 

Position Wigner 
representation representation 

Representation Momentum 
used in this representation 
paper 

where k is a Floquet exponent. The new coefficients p(v ,  p, k) then obey the same 
difference equations as p(v, p, v )  defined in (3.4) with k = M v / h .  The exponent k is not 
fixed by the boundary conditions, but by the source term. When the inhomogeneous 
solution is constructed from (3.6) and the source function (2.8), an integral over real k 
values results, corresponding to the velocity integration in the momentum representa- 
tion. The index p then corresponds to a Fourier index in the expansion of the periodic 
coefficients in the Floquet solution of (2.10). 

The four representations we have discussed are summarized in the chart below: 

Variables 
Fourier transform 

2 (3 P 

Each representation depends on two variables, one chosen from each of the Fourier 
transform pairs (2, p )  and (2, P ) .  The formulation of our problem can be converted 
from any one of the four representations to any other one by an appropriate Fourier 
transformation. Hence all are equally valid. The choice of representation for solving a 
problem can be based solely on mathematical convenience. 

In the above scheme, the number of basic variables does not change when recoil 
effects are retained in the formulation, yet the problem becomes much more difficult 
mathematically. In the Wigner and momentum representations this occurs because the 
recoil associated with the interaction couples together the behaviour of molecules of 
different momentum classes, whereas, without recoil the equations for each momentum 
class are independent. In our present formulation the effect of recoil is to insert periodic 
coefficients into differential equations. This greatly complicates the analytic solution of 
the equations, but makes little difference when the equations are solved numerically. 
That is why we have chosen the present formulation for the numerical solutions to be 
reported in a following paper. 

4. General features of solving the equations 

4.1. Dimensionless variables 

For algebraic and numerical convenience we shall rewrite our basic equations in terms 
of dimensionless variables and parameters. First we rewrite the density matrix as its 
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field-free steady state plus a correction to describe the interaction with the field: 

ibAyu A b /  yb -ibAz,e'"' yzbv 
0 Y 2 4  

(4.1) 

where m= A,/ ya -&,/yb is the field-free steady-state population inversion. In the 
off-diagonal elements we have also factored out the amplitude and time dependence of 
the field. This permits our new variables to be time independent in steady state and to 
depend on the field amplitude only through the intensity parametert 

Q = 2 b 'A '1 y1 y2, (4.2) 

Y1 = YaYb/Yab  and yab = 8 y u  + yb). (4.3) 

where 

The factor @/2 V#in (4.1) has been so chosen that Y , ~ ( O )  give directly the ratios of the 
susceptibility x or attenuation coefficient /3 to its unsaturated value in the Doppler limit 
(compare the notation of Shirley 1973) 

We scale our system to the relaxation rate y2 (unsaturated homogeneous linewidth) 
by defining the relaxation rate ratios 

r1 = YJY* (i = a, b, ab, l), (4.5) 

the detuning parameter 

the recoil shift parameter 

and the Doppler parameter 

Finally we replace the position variable z by 

s = y*z/ v,. (4.9) 

+ Our intensity parameter a corresponds to the following parameters in other papers: 

Holt (1970) and Shirley (1973) a 
Kol'chenko et a1 (1969) f K  

Feldman and Feld (1970) $1 
Baklanov and Chebotayev (1971) 7,y 
Haroche and Hartmann (1972) $1' 
Stenholm (1974) d* 
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The equations of motion (2.10) then become 

( v $ + r a ) U v  =zrLa(yv+l+zy--l) 1 elfs -~r lAa(yv-l+z,+d 1 

d (vz+ 1 -i tan 
(4.10) 

=29&,1-2A9*Sv,-1-a,-l e -i.s +b,-, ei's+Aav+l e"'-Ab v + l  
e-ifs 

(v$+l+i  tan$ zv=29S , , -1 -2A9*S , ,1 -a ,+ l  e-irs+ bu+l eirs-Ab,-l e-irs. 

We have dropped the time derivative since we shall be concerned only with the 
steady-state solution in what follows. Our definition of a. and bo has transferred the 
source terms to the Y = 1 equations in the form 

%(SI = (277Jr)-l(n+ e-iss-n- eirs) exp(-s2/4q2) (4.11) 

(4.12) 

) 

= (277J.rr)-l[cos ES - i(n+ + n-) sin E S ]  exp(-s2/4v2), 

where 
n+=Aa/yaW and n-=hb/YbW. 

For v = O  there is no derivative term, so a. and bo can be eliminated from (4.10) 
algebraically. 

In any solution of equations (4.10) we shall always truncate the Fourier expansion 
(2.9) so that only a finite number of equations will be considered. We know from 
previous work without recoil (Shirley 1973, Holt 1970) that truncation gives a very 
good approximation for p or ,y whenever the Doppler width well exceeds the saturation 
width. We expect this to remain true with recoil present. 

4.2. The homogeneous solution 

Mathematically equations (4.10) are linear differential equations with periodic coeffi- 
cients (period 2.rr/c). By Floquet's theorem (Moulton 1958) we know their homogene- 
ous solution is of the form XiCi((s) exp(&s) where the ti are constants and the Ci are 
periodic functions of s. But such a solution cannot simultaneously vanish at both plus 
and minus infinity no matter what the real part of ti is. Hence the boundary conditions 
rule out the homogeneous solution, admitting only the solution generated by the 
inhomogeneous source term. (Compare the discussion in Aminoff and Stenholm 
(1976, appendix 3).) In seeking approximate solutions one should, therefore, always 
start with the source terms and then work away from them. 

4.3. Symmetry conditions 

According to quantum mechanics, the density operator is Hermitian: 

(~llPaslzz)* = (z2lPsalzl>. 

Since this property is preserved both by the interaction with the field and by (8p/8t)relax,  
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we can apply it to derive the symmetry condition 

P*P&, 2 )  =psa(-v,  -2 ) .  

a t (s )  = a-,(-s) 

b$,(s) = b-,(-s) 

For our dimensionless variables this becomes 

yt (s> = 2-J-s)  

z*,(s) = y - J - s ) .  

(4.13) 

(4.14) 

By utilizing this symmetry one need solve equations (4.10) only for the variables with 
positive v index, or only for positive s values. In the latter case we evaluate the 
symmetry conditions at s = 0. We then use them as boundary conditions at s = 0 to 
replace those at minus infinity while still defining a unique solution for positive s. But 
since we are seeking y*l  at s = 0, the problem becomes one of finding those initial 
conditions at s = 0 which give a solution vanishing at plus infinity. The complete 
solution for all s is not needed. Numerically, the initial conditions can be found with 
reasonable accuracy, even though the numerically generated solution of the differential 
equations based on these initial conditions may be inaccurate. 

4.4. Doppler limit 

In calculations neglecting recoil much attention has been given to the Doppler limit case 
in which the Doppler width qu is much greater than the homogeneous linewidth y2. In 
the present formulation this limit alters the problem slightly. As 7 approaches zero, the 
source function %(s) approaches a delta function in s, independent of recoil. This 
source can be easily handled, however, by integrating the equations over an infinitesi- 
mal distance across the delta function. The functions y+l and z*l thereby experience 
discontinuities, while all other functions remain continuous. By incorporating half the 
discontinuity into the boundary conditions at s = 0, the boundary value problem for 
positive s alone remains well defined (has continuous solutions), but becomes one for 
homogeneous equations instead of inhomogeneous ones. 

4.5. Recoilless limit 

The recoil shift can be neglected in the present formulation by simply letting E go to 
zero. The differential equations then have constant coefficients and can be solved by 
conventional techniques. By so doing we have reproduced several of the special 
solutions given by Shirley (1973). The amount of algebraic effort required in the two 
methods is comparable. Our new formulation offers no particular advantage in analytic 
calculation. 

In the general case of a strongly saturated system the observables have to be 
evaluated numerically. Then our new formulation seems to offer advantages, because it 
can incorporate additional features without requiring any change in the method of 
solution. As we have seen, recoil is included merely through the introduction of 
periodic coefficients into the system of differential equations. Furthermore, the numer- 
ical accuracy is concentrated where we want it, in yk1(0 ) ,  and not in the values at large s. 

5. Solution for one running wave 

To illustrate a solution of the inhomogeneous equations (4.10) we consider only one 
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running wave to be present (A = 0). In this case, examination of the equations (4.10) 
shows that they separate into independent sets of four equations each for the variables 
a,, b,, Y , + ~ ,  and z,-~. The inhomogeneous terms appear only in the v = 0 set of 
equations, so only this set has a non-zero solution. Eliminating a. and bo algebraically 
the exponential factors cancel leaving the following two equations: 

y l + a ( y l + z - l ) =  2 9  

) d 
( ds 

- -+ l+ i  tan qi ~ - ~ + a ( y ~ + z - ~ ) = 2 9 .  

Equations (5.1) can be solved by the method of variation of parameters in the 
homogeneous solution. The result is 

y1 = [ ( C l -  l)f-(s) eQs +(Q-'+ l)f+(s) e-Qs] eiStan9 

and (5.2) 
zP1 = [(Q-' + l)f-(s) eQs + (0-l - 1)f + s  ( e -Os] eistan9, 

where Q = (1 + 2 ~ ) ~ ' ~ .  The new functions f*(s) are defined by the integrals 

and (5.3) 
W 

f-(s) = I g(t)  e-(Q+itan*L" dt. 
S 

In this form we can see explicitly how the solution (5.2) goes to zero at *cc to meet the 
boundary conditions. We can also express f * ( s )  in terms of the error function of a 
complex argument: 

We have used the abbreviation l* = (tan (I, + e  +iQ)q. Note that fT(s) =f-(  - s )  in 
agreement with the symmetry condition (4.14). Using the symmetry at s = 0 we can 
write the attenuation coefficient as 

(5 .5 )  

The dominant effect of recoil is the shifting of the absorption and emission Doppler 
lines relative to each other as shown by the exponentials in (5.4). This feature was 
mentioned in the work of Kol'chenko eta1 (1969). The separation of the lines is blurred 
when the homogeneous width Q is comparable to or larger than E .  

f+(O) = (-i/2J.rr)(ncZ(l+) - n - W - ) ) .  

P = Po[(~/Q> Re f+O + 2i Imf+(O)I. 

If we introduce the plasma dispersion function (Fried and Conte 3961) we can write 

(5.6) 
Lettinge go to zero then recovers the solution without recoil given by Shirley (1973). 
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When 7 becomes small, erf(s/27) approaches a step function, while [* approach 
zero. In (5.4) the exponentials flatten while the two error functions merge. In the 
Doppler limit f*(O) = f. The recoil effects disappear. The solution (5.4) shows in detail 
how the Doppler limit is reached. 

6. Lineshape observed with a weak probe beam 

6.1. Derivation of solution 

When the oppositely running wave is weak we find an approximate solution by a 
perturbation series in A about the one running wave solution. From the basic equations 
(4.10) we see that each set of variables a,, b,, y,,+,, z , - ~  is coupled in order A to an 
adjacent set with Y index differing by two. Starting from the inhomogeneous terms the 
variables of the different sets are thus of order A'"'. To get the lowest-order value for 
the attenuation coefficient p- of the weaker wave we solve the set of equations 
including y-l to order A : 

y-l+a-z e-i's-b-2eifS =-2A$?*+A(aoeies-b~e-ies) 

1 

ds 

a-2-grlcr(y-1+z-3)e"s 1 = -grlcrAz-l e-irs 

2 - 3  + a-2 e-'" - b-' eifs = 0. 

We have omitted terms in y-3 since they are of order A '. If we insert the one running 
wave solution for ao, bo and z - ~  then the terms on the right-hand sides are all 
inhomogeneous terms of order A. 

We shall carry out the solution of (6.1) for positives in the Doppler limit. From (5.2) 
we obtain 

~ - 1 = ( Q - ' - l ) g  

and 

where g = exp[(-Q + i  tan $)SI. The inhomogeneous terms thus introduce two differ- 
ent oscillation frequencies into equations (6.1). The solutions contain both frequencies 
(exponentials) in the form 

y-, = A (C + C' e-2irs)g 

a-' = A ( A  e3i's +A' eWicr)g 

b-z = A  (B  elcs +B' e-3i6r)g 

2-3 = A  (D eZirs + D' e-2ifs)g, 

(6.3) 
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where A, B, C, D and their primed counterparts are constant coefficients found by 
substituting (6.3) and (6.2) into (6.1) and equating coefficients of like terms. 

At s = 0 we have y-l = A (C+ C’- 1) where the last term arises from the Doppler 
limit discontinuity generated by the 9?* term in (6.1). We then obtain the attenuation 
coefficient for the weaker wave from (4.4) as 

p-  = &(l- c- Cl). (6.4) 
In the absence of the stronger wave the inhomogeneous terms (6.2) vanish, hence C and 
C’ vanish, and p- reduces to the unsaturated value Po. The non-linear, Doppler-free 
lineshape (Lamb-dip) of interest to spectroscopists is the change in attenuation due to 
the presence of the oppositely running wave. In the present case it is just proportional 
to Re(C+ C’). 

The variables a-2 and b-2 are associated with spatial modulation of the level 
populations induced by the standing-wave part of the field. If we neglect these variables 
in (6.1) (rate equation approximation) we obtain directly 

and (6.5) 
C =  CQ (ff/rabQ)rb/hl 

c‘= cl (a/rQbQ)r,/hi 
where 

h l =  l + Q - 2 i ( t a n Q + ~ )  and h i =  l + Q - 2 i ( t a n $ - ~ ) .  (6.6) 

The lineshape is then a superposition of two Lorentzian curves centred at o = w o k  So 
with heights in the ratio y,/yb and power-broadened widths y2(1 + Q)/2. This is the 
simplest case to solve which gives a power-broadened lineshape. The perturbation 
result of Kol’chenko et a1 is obtained from (6.5) and (6.6) by replacing Q with unity. 

Unfortunately, when the relaxation rates y,, yb and y 2  are of comparable size and 
power broadening is significant, the rate-equation approximation is not very good. 
Retaining all four equations (6.1) we find C = C, + C, and C’ = C,‘ + C, with 

The new h’s are 

h, = r, + 2Q - 2i(tan $ + 3 ~ )  

hb = rb + 2Q - 2i(tan $ + E )  

and 

h, = 1 + 3Q - 2i(tan $ + 3 ~ ) .  

C: is obtained from C, by exchanging the subscripts a and b and reversing the sign of E. 

When E vanishes we recover equation (120) in the work of Shirley (1973). The effect of 
C, is to reduce the peak of the Lorentzian in C,, fatten its tail, and introduce a slight 
asymmetry shifting the maximum of C inward (see figure 1). The total lineshape from 
(6.5) and (6.7) agrees with the recent analytic result of Bord; (1976). 

6.2. Discussion of the lineshape 

In order to obtain a preliminary view of the results obtainable by the present method of 
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calculation, we have investigated the accuracy of the rate-equation approximation 
(REA) in the limit of a weak probe. 

Due to recoil the lineshape acquires two separated peaks. For equal relaxation rates 
the curve remains symmetric, but from the earlier work (Aminoff and Stenholm 1976) 
we expect the REA result to overemphasize the doublet structure. This is, indeed, borne 
out by the results of figure 1 where REA is compared with the exact calculation. The 
same trend is observed in figure 2 where we have asymmetric peaks due to unequal 
relaxation rates ( y G / y b )  = 3. We observe, however, that the position of the strong peak 
remains the same also in the REA. When power is increased the two peaks tend to 
merge, but the maximum is only displaced slightly from the position of the stronger 
peak. This effect of power is seen in figure 3. This set of curves should be compared 
with figure 3 of Aminoff and Stenholm (1976). 

- L  - 2  0 2 c 
tan 

Figure 1. The lineshape of the response to a weak probe beam, as a function of the detuning 
parameter (w - wo) /y2  = tan $. The parameters are a = 2, E = 2 and ( y u / y b )  = 1. The 
broken curve is the rate-equation result, the full curve is the complete solution. The arrows 
show the positions of the peaks in the low-intensity limit. 

- L  -2 0 2 4 
tan 

F i p e  2. The same as figure 1, but with unequal relaxation rates, ( y u / y b )  = 3. 
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I I I 

tan p 

, 
- 4  - 2  0 i 4 

Figure 3. Lineshapes for unequal relaxation rates: ya/’yb = 2, Yob = y2, at various power 
levels, showing how power broadening obliterates the recoil splitting. 

The earlier theory has been used to evaluate the resolvability of the recoil splitting. 
Here we carry out a similar comparison to see the difference between the REA and the 
exact theory. The criterion on resolvability we choose here is based on the fact that the 
curves in figure 1 can be reasonably well approximated by two Lorentzians of equal 
strengths and widths. If their centres are separated by 2r the mathematical condition 
for a minimum to exist between the two Lorentzians is that the half-width w satisfies the 
condition 

w < 3”’~ 5: 1.736. (6.9) 

In a previous publication (Aminoff and Stenholm 1976) the criterion of a 1% dip was 
used. This corresponds to a condition w < 1.526. For convenience in handling numeri- 
cal data, we adopt the criterion that the height of the line at the minimum is less than the 
height at a detuning equal to E. This gives instead of (6.9) the condition 

w < 2’% 5: 1.41~. (6.10) 

For the symmetric case, w = 2l”~ leaves a dip of 2.4% and the splitting between the 
two peaks is decreased by 32% due to overlap. 

In figure 4 we show the power levels a which just obliterate the recoil doublet as a 
function of the recoil splitting. For the REA the width w = +(I + Q) = 2”*6 gives the 
upper curve 

(6.11) (Y = 2(2)’/2E(21’2E - 1) 

(see equations (6.5)-(6.6)). The lower curve shows the effect of C, and C: which 
increases the power broadening and thus reduces the power range over which the 
splitting is resolved. For unequal decay rates the curve lies between the two shown. 
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1 2 
E 

3 

Figure 4. Strong beam intensities which just obliterate the recoil splittingin the probe beam 
lineshape as a function of recoil shift. The upper curve is the rate-equation result, valid for 
ya = yb << y2. The lower curve, valid for all relaxation rates equal, shows how much the 
region of resolved lines is reduced when population modulation processes are important. 

Figure 4 should be compared with figure 6(a) of Aminoff and Stenholm (1976). 
Except for the exchange of axes they are seen to agree. This shows that the REA is not 
very useful in deciding resolvability questions, because, even if its average error is small, 
it gives an incorrect lineshape already for moderate power levels. This limits the 
usefulness of the calculation published earlier. We note, however, that the perturbation 
result by Kol’chenko et a1 gives only the point at a = 0, where the two calculations 
coincide. 

7. Conclusions 

We have developed a new method to calculate the results of non-linear spectroscopy in 
Doppler-broadened media. This provides an alternative to the conventional method 
which just evaluates the response for a given velocity and only at the final stage averages 
out the velocity dependence. In the new method the velocity average is computed 
directly and the unobservable details of the velocity dependence never enter the 
calculations. Another advantage is that new features of the problem are easily 
introduced. This point is stressed in the present paper, where photon-induced recoil is 
taken into account. The method incorporates this feature easily, and some simple, 
analytically solvable cases are treated. A comparison between the present results and 
earlier ones is included. 

The real advantage of the present scheme emerges when strong-signal theory with 
recoil is attempted. No other method has been able to give results for that case. Due to 
the complexity of the ensuing equations, the calculations have to be wholly numerical. 
The approach has, however, been made to work, and the details will be reported in a 
forthcoming publication. 
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